Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Phytother Res ; 2022 Jul 27.
Article in English | MEDLINE | ID: covidwho-1958848

ABSTRACT

The SARS-CoV-2 COVID-19 pandemic has emerged as an unprecedented emergency state in healthcare system and global challenge. In recent decade, the function of exogenous H2 S in the treatment of respiratory diseases has been investigated using H2 S-donor agents. Ferula foetida is a medicinal plant that is traditionally used in respiratory diseases including asthma and viral respiratory diseases. The oleo-gum of this plant is a rich source of several organic sulfides including thiophenes, disulfides and polysulfide derivatives, which can act as H2 S-donor agents. The purpose of this study was to investigate the efficacy of Covexir® (F. foetida oleo-gum) treatment as a rich source of H2 S-donor compounds in clinical presentations of patients with COVID-19. The efficacy of Covexir® was evaluated in a randomized, double-blind, placebo-controlled trial in outpatients with COVID-19. Covexir® could significantly inhibit cough when compared to the placebo group (p < .01 and p < 001, respectively). Moreover, there was a significant difference (p < 001) between the two groups in dyspnea symptom at follow-up interval of 7 day after receiving Covexir®. Furthermore, on days 3 and 7, statistically significant differences were observed in myalgia, anorexia, anosmia, and sense of taste severity between two groups. Our findings revealed that Covexir® was very safe in the treatment of COVID-19 patients with mild to moderate symptoms and it can be recommended to improve clinical presentations of patients with COVID-19 such as cough, shortness of breath, myalgia, anorexia, anosmia, and sense of taste.

2.
Sens Actuators B Chem ; 362: 131764, 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-1763980

ABSTRACT

The pandemic of the novel coronavirus disease 2019 (COVID-19) is continuously causing hazards for the world. Effective detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can relieve the impact, but various toxic chemicals are also released into the environment. Fluorescence sensors offer a facile analytical strategy. During fluorescence sensing, biological samples such as tissues and body fluids have autofluorescence, giving false-positive/negative results because of the interferences. Fluorescence near-infrared (NIR) nanosensors can be designed from low-toxic materials with insignificant background signals. Although this research is still in its infancy, further developments in this field have the potential for sustainable detection of SARS-CoV-2. Herein, we summarize the reported NIR fluorescent nanosensors with the potential to detect SARS-CoV-2. The green synthesis of NIR fluorescent nanomaterials, environmentally compatible sensing strategies, and possible methods to reduce the testing frequencies are discussed. Further optimization strategies for developing NIR fluorescent nanosensors to facilitate greener diagnostics of SARS-CoV-2 for pandemic control are proposed.

3.
Cells ; 11(6)2022 03 09.
Article in English | MEDLINE | ID: covidwho-1731953

ABSTRACT

The infection with SARS-CoV-2 impairs the glucose-insulin axis and this contributes to oxidative (OS) and nitrosative (NSS) stress. Here, we evaluated changes in glucose metabolism that could promote the loss of redox homeostasis in COVID-19 patients. This was comparative cohort and analytical study that compared COVID-19 patients and healthy subjects. The study population consisted of 61 COVID-19 patients with and without comorbidities and 25 healthy subjects (HS). In all subjects the plasma glucose, insulin, 8-isoprostane, Vitamin D, H2S and 3-nitrotyrosine were determined by ELISA. The nitrites (NO2-), lipid-peroxidation (LPO), total-antioxidant-capacity (TAC), thiols, glutathione (GSH) and selenium (Se) were determined by spectrophotometry. The glucose, insulin and HOMA-IR (p < 0.001), 8-isoprostanes, 3-nitrotyrosine (p < 0.001) and LPO were increased (p = 0.02) while Vitamin D (p = 0.01), H2S, thiols, TAC, GSH and Se (p < 0.001) decreased in COVID-19 patients in comparison to HS. The SARS-CoV-2 infection resulted in alterations in the glucose-insulin axis that led to hyperglycemia, hyperinsulinemia and IR in patients with and without comorbidities. These alterations increase OS and NSS reflected in increases or decreases in some oxidative markers in plasma with major impact or fatal consequences in patients that course with metabolic syndrome. Moreover, subjects without comorbidities could have long-term alterations in the redox homeostasis after infection.


Subject(s)
COVID-19 , Hyperglycemia , Insulin Resistance , Selenium , Antioxidants/metabolism , Glucose , Glutathione/metabolism , Homeostasis , Humans , Hyperglycemia/complications , Insulin/metabolism , Oxidation-Reduction , Oxidative Stress , SARS-CoV-2 , Sulfhydryl Compounds , Vitamin D , Vitamins
4.
Nitric Oxide ; 120: 16-25, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1631854

ABSTRACT

The novel coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is a global pandemic which is primarily considered a respiratory illness. However, emerging reports show that the virus exhibits both pulmonary and extra-pulmonary manifestations in humans, with the kidney as a major extra-pulmonary target due to its abundant expression of angiotensin-converting enzyme 2 and transmembrane protease serine 2, which facilitate entry of the virus into cells. Acute kidney injury has become prevalent in COVID-19 patients without prior any history of kidney dysfunction. In addition, the virus also worsens kidney conditions and increases mortality of COVID-19 patients with pre-existing chronic kidney disease, renal cancer, diabetic nephropathy, end-stage kidney disease as well as dialysis and kidney transplant patients. In the search for antiviral agents for the treatment of COVID-19, hydrogen sulfide (H2S), the third established member of gasotransmitter family, is emerging as a potential candidate, possessing important therapeutic properties including antiviral, anti-inflammatory, anti-thrombotic and antioxidant properties. A recent clinical study revealed higher serum H2S levels in survivors of COVID-19 pneumonia with reduced interleukin-6 levels compared to fatal cases. In this review, we summarize the global impact of COVID-19 on kidney conditions and discuss the emerging role of H2S as a potential COVID-19 therapy.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Hydrogen Sulfide/pharmacology , Kidney Diseases/drug therapy , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , COVID-19/virology , Humans , Hydrogen Sulfide/chemistry , Kidney Diseases/virology
5.
Pulmonologiya ; 31(5):636-644, 2021.
Article in English | Scopus | ID: covidwho-1638679

ABSTRACT

Aim. To propose a new type of antiviral treatment for COVID-19, pending the rollout of the developed vaccines and bypassing vaccine resistance of the new upcoming mutated virus variants. Aiming for prophylaxis and early therapy, the search focused on small molecules or repurposed, safe, oral and inexpensive drugs, also suitable for low-income countries. Methods. A search in peer-reviewed literature for preclinical antiviral mechanisms highlighted at last two clinical studies for further detailed clinical analysis: 1) High dose N-acetylcysteine (NAC) was successfully applied in very severe COVID-19-pneumonia;2) The discovery of serum level H2S (hydrogen sulfide) as a prognostic host factor. Results. Combining of these two findings resulted in a step-by-step approach with 3 perspectives that describes how H2S works in viral respiratory diseases, how H2S targets at least three vulnerabilities in the SARS-CoV-2 virus;finally, how H2S can be generated and with which drugs. More than 3 dozen successful, clinically well-documented applications have already been found. Conclusion. By using NAC as the H2S donor, the generated endogenous antiviral H2S reactivates the collapsed innate immunity, providing a therapy regimen for COVID-19. Further randomized controlled trials are warranted, considering antiviral H2S for inclusion in some master trial protocols. © 2021 Medical Education. All rights reserved.

6.
Biomolecules ; 11(12)2021 12 18.
Article in English | MEDLINE | ID: covidwho-1581038

ABSTRACT

Hydrogen sulfide (H2S) is a ubiquitous gaseous signaling molecule that has an important role in many physiological and pathological processes in mammalian tissues, with the same importance as two others endogenous gasotransmitters such as NO (nitric oxide) and CO (carbon monoxide). Endogenous H2S is involved in a broad gamut of processes in mammalian tissues including inflammation, vascular tone, hypertension, gastric mucosal integrity, neuromodulation, and defense mechanisms against viral infections as well as SARS-CoV-2 infection. These results suggest that the modulation of H2S levels has a potential therapeutic value. Consequently, synthetic H2S-releasing agents represent not only important research tools, but also potent therapeutic agents. This review has been designed in order to summarize the currently available H2S donors; furthermore, herein we discuss their preparation, the H2S-releasing mechanisms, and their -biological applications.


Subject(s)
Drug Discovery , Gasotransmitters/pharmacology , Hydrogen Sulfide/pharmacology , Animals , Benzenesulfonates/administration & dosage , Benzenesulfonates/metabolism , Benzenesulfonates/pharmacology , Benzenesulfonates/therapeutic use , Chemistry, Pharmaceutical , Gasotransmitters/administration & dosage , Gasotransmitters/metabolism , Gasotransmitters/therapeutic use , Humans , Hydrogen Sulfide/administration & dosage , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/therapeutic use , Morpholines/administration & dosage , Morpholines/metabolism , Morpholines/pharmacology , Morpholines/therapeutic use , Naproxen/administration & dosage , Naproxen/analogs & derivatives , Naproxen/metabolism , Naproxen/pharmacology , Naproxen/therapeutic use , Organothiophosphorus Compounds/administration & dosage , Organothiophosphorus Compounds/metabolism , Organothiophosphorus Compounds/pharmacology , Organothiophosphorus Compounds/therapeutic use
7.
Br J Pharmacol ; 177(21): 4931-4941, 2020 11.
Article in English | MEDLINE | ID: covidwho-991238

ABSTRACT

The COVID-19 pandemic caused by SARS-Cov-2 demands rapid, safe and effective therapeutic options. In the last decades, the endogenous gasotransmitter hydrogen sulfide (H2 S) has emerged as modulator of several biological functions and its deficiency has been associated with different disorders. Therefore, many H2 S-releasing agents have been developed as potential therapeutic tools for diseases related with impaired H2 S production and/or activity. Some of these compounds are in advanced clinical trials. Presently, the pivotal role of H2 S in modulating the inflammatory response and pro-inflammatory cytokine cascade is well recognized, and the usefulness of some H2 S-donors for the treatment of acute lung inflammation has been reported. Recent data is elucidating several mechanisms of action, which may account for antiviral effects of H2 S. Noteworthy, some preliminary clinical results suggest an inverse relationship between endogenous H2 S levels and severity of COVID-19. Therefore, repurposing of H2 S-releasing drugs may be a potential therapeutic opportunity for treatment of COVID-19. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.


Subject(s)
Coronavirus Infections/drug therapy , Hydrogen Sulfide/metabolism , Pneumonia, Viral/drug therapy , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/virology , Cytokines/metabolism , Humans , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , COVID-19 Drug Treatment
8.
Am J Physiol Cell Physiol ; 319(2): C244-C249, 2020 08 01.
Article in English | MEDLINE | ID: covidwho-889936

ABSTRACT

The outbreak of COVID-19 pneumonia caused by a new coronavirus (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) is posing a global health emergency and has led to more than 380,000 deaths worldwide. The cell entry of SARS-CoV-2 depends on two host proteins angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). There is currently no vaccine available and also no effective drug for the treatment of COVID-19. Hydrogen sulfide (H2S) as a novel gasotransmitter has been shown to protect against lung damage via its anti-inflammation, antioxidative stress, antiviral, prosurvival, and antiaging effects. In light of the research advances on H2S signaling in biology and medicine, this review proposed H2S as a potential defense against COVID-19. It is suggested that H2S may block SARS-CoV-2 entry into host cells by interfering with ACE2 and TMPRSS2, inhibit SARS-CoV-2 replication by attenuating virus assembly/release, and protect SARS-CoV-2-induced lung damage by suppressing immune response and inflammation development. Preclinical studies and clinical trials with slow-releasing H2S donor(s) or the activators of endogenous H2S-generating enzymes should be considered as a preventative treatment or therapy for COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Hydrogen Sulfide/therapeutic use , Pneumonia, Viral/drug therapy , Virus Internalization/drug effects , Virus Replication/drug effects , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Host-Pathogen Interactions , Humans , Hydrogen Sulfide/metabolism , Lung/drug effects , Lung/metabolism , Lung/virology , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , SARS-CoV-2 , Serine Endopeptidases/metabolism , Signal Transduction , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL